M4300 Spine and Leaf Topology Switching Capacity Calculation

Spine capacity = total stack link throughput on each unit x number of spine unit Leaf capacity = total stack link throughput on each unit x number of leaf unit

In the above example :
-2 spine, interconnected together with $4 \times 10 \mathrm{G}$

- 6 leaf, connected to each spine with $2 \times 10 G$ (total $4 \times 10 G$ on each leaf connect to 2 spine)

Total Spine capacity :
Spine interconnected stack link throughput $=4 \times 10 \mathrm{G} \times 2$ (full duplex) $\times 2$ (no. of spine) $=160 \mathrm{G}$
Spine connected to 6 leaf stack link throughput $=2 \times 10 \mathrm{G} \times 2$ (full duplex) $\times 6$ (no. of leaf) $\times 2$ (no. of spine) $=480 \mathrm{G}$
Total Spine capacity $=160 \mathrm{G}+480 \mathrm{G}=640 \mathrm{G}$
Total Leaf capacity :
Leaf connected to 2 spine stack link throughput $=4 \times 10 \mathrm{G} \times 2$ (full duplex) $\times 6$ (no. of leaf) $=480 \mathrm{G}$
Total Leaf capacity $=480 \mathrm{G}$
In this $2 \times$ spine $6 x$ leaf topology, total switching capacity $=640 G+480 G=1120 G$

